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SUMMARY

A development of the motion of a close earth satellite in the

vicinity of critical inclination is given to order k 2, The method

followed is that of expanding the potential in powers of G in the

neighborhood of Go . The odd harmonic of the potential function is

included in this expansion. The equations of motion are then

given in the form suitable for numerical computation by elec-

tronic computers. It is shown that this approximation is analo-

gous to the motion of a pendulum.
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SATELLITEMOTIONIN THE VICINITY
OF CRITICALINCLINATION

by

David Fisher

Goddard Space Flight Center

INTRODUCTION

Since the quantity 5 cos 2 I - 1, where I is the inclination of the orbit plane, appears as

a divisor in the solutions of the equations governing the motion of close earth satellites,

the motion of a satellite in the vicinity of cos 2 I = 1/5 is a subject of much interest (Ref-

erences 1-4). Analytic studies of the motion of a close earth satellite to the order _ in

the vicinity of cos 2 I -- 1/5 (called the critical inclination) have shown that this satellite

motion is exactly analogous to the motion of a pendulum free to oscillate about a horizon-

tal axis. The motion of this type of pendulum has been studied extensively (References 5

and 6); and consequently the motion of a close earth satellite in the vicinity of critical in-

clination is now well understood.

For the prediction of the motion of close earth satellites, however, it is readily possi-

ble to increase the accuracy of the solutions by numerical methods with the use of modern

electronic computers, as suggested by Bailie, and by Hori (Reference 3). Accordingly, a

numerical approach suggested by the works of Hagihara (Reference 1) and of Garfinkel

(Reference 4) has been adopted in the development discussed herein.

EXPANSION OF THE HAMILTONIAN

The Delaunay variables are defined by the following expressions:

L = (,u_a)1/2,

G : L(l-e2) 1/2,

H -- G cos I ,

Z = mean anomaly,
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g = argument of perigee,

h = argument of the ascending node.

It is assumed thatL and H are known constants. G is always taken as positive; consequently

when cos I is negative, H is also negative.

Brouwer's Hamiltonian (Reference 7) to order k22 is given by

F = Fo + FI + F2, + Q2 cos2g + Q3 sing .

By converting Equation 1 to Vanguard units (i.e.,

we have

1

F 0 = 2 L 2 '

k4/k22 = 11/5, A3, o

(I)

= -2k3, and _ : 1),

(1 "')-k2 - 3-_ ,F1 - 2 L3G 3

= F H2 H4k_ -123 + 1710 - 2235--

F2s 160 LSGS L _- G4

,,(+ 60-_- 1 - 6_" ÷ 9_ - + 5_- 51- H2 HT)]630 _ + 875

Q2 - LSGS 1- - 8 G--"_- + _-_'/

where

Q3 = 4LaG_e sinI 1 - 5 ,

G2_1/2e = 1 - L2----j ,

H2____t / 2.sin I -- I - G2]
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In order to study the motion in the vicinity of critical inclination, it is convenient to

expand the Hamiltonian, as was done by Garfinkel (Reference 4) in powers of 8 = G -Go,

where G o is the value of G at the epoch. Then

+ L\YG-/o \_-)o o cos 2g + (aa-_)o sin S

The values of the coefficients of 8 are:

(aFi__ 3k2 (1_5cos2 io) ,
\o-G-]o - 2L a Go'i

02Fll 3 k 2
\O_-)o - LaG: (-2 +15c°: :°) '

(3a)

03Fl_ 15k2
aGa-----/o - L-;_ (2-21c°s _I o) ,

(3b)

04Fl_ 180 k 2
-

(3c)

(OF2,,_ k2_ [123 1197

folio = L'G:L32 16 4023 L(49_ 13s . )--c°s2I° + -32=-c°s4 I° -_00 - 18cos 2I o + Tcos I o

L' (33_ 2835 , 9625 ,) )]---_--cos Io +--_---cos Io
GO2

, (3d)



L_,13 7141752 ,+ Go2 _ cos I o +--_---cos I o , (3e)

o = L s Go6 _ + S6 cos _ I o --ig-cos I o

+ Goa - 72 cos 2 I o + _ cos 4 I ° , (3f)

8G2] ° - LSGo z - 448cos_Io +---_cos4I o

Go2 - 720cos2 io + _cos41 o ,
(3g)

-_-]o - 4LSGf 5eosinlo(1-7cos21o) + (1-5cos21o) • e----_--si--_o (3h)

--_G2 / 0 = 4L3G07 30-280c°s210) eosinI 0 + (11-75cos2Io) -e o

(sinlo e o ) ( G°-2 _
+ (5cos210 -1) eo +_ c°ti Io + L2eo2iJ• (3i)

An integral of the motion is given by the equation

F--C . (4)

To evaluate C we set G =G o, or S = O, and g = go to obtain

c _ Fo+(_)o+ (F_.)o+(%)0_os_o + (%)°_o , (5)



so that Equation 4 yields the following relation between _ and g:

(O,)o[_o=_-,:o_,%]+(03_0is,_°_- s_=%]

+Lt-_-)o+t-_-)o + o_o=_ + o=_=_

_2

+:\_/o _3+_\_m_,)o_' : o.
(6)

THE MEAN MOTION OF THE ANGULARVARIABLES

The equations of motion are given by

dL d l OF
dt - 0 , dt 0L '

dG OF dd_g- OF
dt 0g' dt = - 0-G '

dH dh OF
d--_ = 0 , dt - 0---H-

(7)

In order to find the mean motion of the angular variables, we set the Hamiltonian

F : F, +2(02)0co===-(O3)o=_==-_, (8)

where

F* = F o + F 1 + F2, - Q2 + Q3 ' (9)



The Mean Motion of l

The mean motion of z is given by

dl' OF*

dt OL

1 3k2

L 3 2L 4G03 (1 3 cos 2 Io)

k' [+ --- 5 (-123+1710cos2I o -2235c°54Io)
160 L 6 GoS

L

+240wo(1-6cos, lo+9Cos,lo)

L___a
-I

(51-630cos 2I 0 * 875cos 4 I0) [
+ 15 G_ A

k2_ (5 L2 \/19 109 )_°oo' 3V)lw_ _os, i0 +_o,,_0

3e0) sinI 0 (1 -5cos 2 I0) •

The Mean Motion of h

The mean motion of h is given by

dh' 3 k 2 cos I o k_ cos I o

dt
L 3 G_ 160 L s Go_

3420 -8940 cos 2 I 0

L L,+ 60-_o (-12+36c°s'I°) + 5--(-1260+3500c°s' I oGo_

(lo)

k22 cosI 0 1 - -16 +T c°S2Io

LSGo 6

3,, ]
4L3G0 _ e0 c°sI0 - sini ° +10sinI0

(11)



7

The Mean Motion of g

In close proximity to the critical inclination, (i.e., when ]1 -5 cos 2 I I = _k_r-_2where

k < 1 ,) the mean motion of g may be zero. This is the case of libration and will be discussed

later. When the mean motion of g is not zero, it is given by

dg'
dt 3k 2 (1 -Scos 2 I0)

2 L 3 Go4

k; [+ -313 +4186 cos 2 I o -5985 cos 4 I 0
32 L s G0s

L ]+-_o (72 -576cos 2Io +1080cos 410) +# (623-7974cos 2 IO +12023cos 410)

3 k 3 [ _sin I o4L3G06 5e0sin Io (1-7c°s210) + (1-5cos2Io) e o
(12)

THE SOLUTION INCLUDING THE LONG PERIOD TERMS

The motions of l, g, and h are given by the canonical equations:

i = OF
3L '

OF

0G '

= OF

(13)

The Motion of

Since

3F OF
= - -a-d--= a-_-; (14)
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and from Equation 2 we arrive at

 ,rFo%
LGJ/o s in gl

Thus _ is a function of g, and consequently g may be found for any given time t by

integration:

tgIt) - g(to) "- _dt. (16)
t o

Now ff values of g and _ exist such that _ = 0, the motion of g will be a pure libration, If

we designate by ge the value of g satisfying the equation _ : 0, the period of libration is

given by

2 : • " (:7)
z e

An estimate of the condition for libration is given by

:fo,]]' (18)

where



(Qa)o _'0

= sin2 _0 - _ sin2 2 '

77

_o = go -T '

77

= g -_-.

An estimate of the value of g satisfying the equation _ = 0 is given by

1 I1 1 Q(__2_oI 1V/I1 1 Q(__/ol 2 (19)

since

The period of oscillationsuperimposed on the secular motion when _ :_0 is given by

T2
2

(20)

The Motions of i and h

The motions of l and h are given by the equations

l(t)- Z(to) = ftto

bit/- h(to) : _t
t o

idt ,

hdt

(21)
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respectively, where i and h are given by Equation 13; and g(t) is given in the previous

section. The following expressions are provided in order to form Z and 1_ from Equation 2:

aFo 1

aL L 3 ; (22)

a(_,)o 3k2
= -- - (1 -3cos 2Io) ;

aL 2 L 4 Go3

a(F2s)
0 : -k22 F

3L 32 L 6 GoS L-
123 + 1710cos 2 I L (1 -6cos 2 I o+9cos 4Io)

- 2235cos 4I o + 48Goo

L2 /1-_ 3-- (51-630cos2I o +875cos4I ° ;
(3o2

OL k22(,9 ,09L6G0 s T6--8cos2 Io+_-cos4Io -3

a (O3)o

aL
3k 3 sin Io (1 - 5 cos2 Io) (4eo2 - 1)

4eoL4 GoS

Lo \aG o/ ;

\ 3G4/o :



. J .....
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at, \ aG /o

k_ [615 5985 _o_'I

_ Lk (lo71 8505 28875 )]

k? 1_i_5 5985 100575
_ L 6 Go7 _-- cos 2 I o + ---i-6--- c°s4 Io )1

L 2 (10__ 1 42525 86625
L (63-648c°s 210 +1485 cos'I0) -_- _- _ +---8--- cos' I o

--%o o

4905
280cos 2 1 o + _c o54 I o

216 cos 3597 o)1210 +'-'i-6-- c°s4 1

2240cos 2 I o
24525

+---g---cos _ I o

10791 0/12160co s2 Io + _ c°s4 I

9"3 /l__5e0sinI 0 (i-7 COS2][O)(1 -4eo 2)

_gI.,oo'L"

+ T (5 CO 52 1"0 L eo
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o l°2Qo_
3k 3 fOsinIo (3_28 cos2io ) (1 -4eo2 )

4L 4 G_ eo

- oo_ L e---'-_

eo/I <1-Oo  <2 3e°2,i
+ (Scos2I 0 - I) L\- eo + _ -3c°t2I 0 - e 04

si_°io/ Ic 1-e°_ /t )
ot 2 io + --

e 02

0F o
- 0 ;

0H

3(FI) 3k 2 cos I0 o

0H---- = L 3 Go4 ;

0(F2,) o k22 I171 Io 447 cos3 I o
- COS --

OH 8 L s Go 6

L (cos I o- 3cos 3 Io)
- 36_-_o

/1- 5--(63 cos I o - 175 cos 3 I o
Go2

a(Q_)o
OH

_ - k_ L 2 -109cos3Io) ;

3k 3 e o cot 2 1o (11 - 15 cos 2 Io)

OH 4L 3 Go_



\-g6-/o = - L_Go_

13

d :_2FI_ ___ 90k2cos Io

att \ dG2/o L3 %6

a la SFl__ - 630k2 cos Io

aH\--_-Jo -- L3Co'

:_,_,_ so4oksco_Io

a :aF2,_ _ -k22 _1_7 4023 LaH_ aC/o L' Co' cos 1o 8 cos_Io--_-o (86cos1o- 185¢os_Io)

9°. /1
G0 2 --cos I o 8 c°s3 Io ;

k22 Fa
[I 20115 io L (324 cosI o-1485cos 3Io)a. \a-_-}o = L' co' L197co_10 ----_ co: -

L 2 (14175 28875 )1-- cos 10 2 c°s3 I0 "
Go2

L2(__\_)o - : Co:Ll12co_Io-_-_o:io+_- 144 11oo )1cosI o +_ cos s I o
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_\--_-)o -- -- _'_o' t ='=:o -_1 :o)

i °0 :or,_%_ =+ (1-Scosllo) eosinI o + + ;

(

O_\OG 2/o - 4La OoScos I° LO
(59- 84 cos 2 I o)

_sin Io e o ._

+,_ot--4-o - _ i-;)

( ' o0;)+ (ll - 7s_o=,:o) _o=i=:o + =i_- i

;.,., .o)(. ,-.;_- 1o( :1 +_ o<=:o + °_/

I( ' .oIC- ,-.o,_oti Io +
+ (Sco=_Io-I) -eo si.i ° sin3 io %2 /

-2 <, .-:>.I11e o =inlo ¢ si (c°t2 I°+ 1 "

The Delaunay Variable G

Hagihara (Reference 1) has shown that the Delaunay variable G is bounded. From the

canonical equations,

6 OF (23)
= a--g;

consequently

I'{G = G O + -2 =in2g

0

(%)0+_)o _ + : \oGVo

+co== (Q,)o+t--::)o_+: t,-7-5)o
at , (24)

since 8 is given as a function of g by Equations 2 and 3, and g is given as a function of t

as discussed above, (3 can be evaluated for any time t.



Procedure for Computations

The computation proceeds along the following lines:

1.

2.

3.

4.

15

The mean motion of the variables z, g, and h are found;

The periods of libration or oscillation are computed;

The angular variable g is found as a function of time from Equations 14-20; and

The variable G as well as the motions of the remaining variables are then found.

REDUCTIONTO THE EXTENDEDPENDULUMPROBLEM

It is interesting to show how the aforementioned may be approximated by an extended

pendulum problem, and consequently, how the estimates for libration were derived. An

approximation to Equation 6 is given by

(Q_)0[cos2s - cos2_o]+ (g)0 [sl. s - sin s0] + \_)o _ +_\-_-)0 s2 = o (2_)

Then by setting

77

G : g-2-'

and

7T

Go : g0 -_-

we can put Equation 25 into the form

o \_-)o
_o _ +4(Q_)o-- _2 + sin 2 G - sin 2 = fi2, (26)

0

where

_2 = <osin 2 Go - sin s--f .
0
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Following Garfinkel (Reference 4), we set

/_ _-_;°I

where

1/2

Now Equation 26 takes the form

f_Q_-j _ _2 _2 .
7 2 + sin 2 _ - sin 2 _- = +

\-e21 o (27)

With

OF OF
ag a_ '

we find that

: 2(02)0si.2e- (03)°_ine. (28)

Using the definition of v given by Equations 26 and 28, we readily find that

i_o_l[_n____-_¢°_°_'n_l
l_,_/O_/o__j

(29)
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Also, by differentiating Equation 27, and using Equation 29 we find that

= (30)

By substituting Equation 30 into Equation 27, an extended form of the pendulum prob-

lem is

= ct2 + f12 .- sin2 _ + (Q-_)o sin22-

4 (Q2)o \_Jo

(31)

To find the conditions for libration we set y = sin _=/2 in the right side of Equation 31 to

obtain

Q(@o= (aa +f12) . 4y_(l_y2) + y2

4(%)° \ oQ,/o

The libration condition _ = 0 is then expressed by the condition that

y# _ y2 - 4 \%fo + 4 : 0 .

Hence, for a solution to exist (i.e., for libration to occur), we must have

in2 _ I _ 1 (Q')° I i /I 1 I (Q3)o I_s 2 - 2 - 4 (Q,)o - -_- - 4 (Qa)o" - (a' +/3 2) , (32)

which means that

(c_2+/?2) > 0 . (33)
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Equation 32 also yields the following estimate for the libration angle

where, of course,

" I- -I
L1 - 4 \%)oJ

a2 + _2 ,_ 1 ,

(34)
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